OncoPeptVAC[™] is an end-to-end genomics platform delivering prioritized T-cell neo-epitopes that can be used as DNA or peptide vaccines for cancer immunotherapy

Highlights

- Time saving generates a short and comprehensive list of tumor-specific mutant peptides for your vaccine program
- State-of-the-art prediction of HLA-types, antigen processing and MHC-peptide binding
- Proprietary strategy to select the most-relevant candidate neo-antigens for validation

Key Benefits

DNA/Peptide Vaccine composition

Benefits	Features
Identify cancer variants with high specificity and sensitivity	 Robust NGS platform with optimized variant calling pipeline
Identify cancer mutations that are potentially HLA-binding	 Sensitive HLA typing and HLA expression analysis Accurate mapping of expressed variants Proprietary neo-epitope selection with multiple prioritization steps Greater than 2-log reduction in the number of prioritized peptides
Identify cancer mutations that are potentially T-cell binding	 Automatic identification of TCR-binding mutations based on the position of the amino acid within the peptide Utilizes the chemical structure of the amino acids to predict rules of TCR binding

DNA/Peptide Vaccine structure

Create optimum length of the peptide or DNA vaccine	 Generates peptide of optimum length to preserve the position of the mutant amino acid at the HLA-binding or TCR-binding sites
Ensure the peptide/DNA vaccines	 Creates the sequence of the peptide/DNA with optimum
are processed correctly to	proteasomal/ immunoproteasomal processing sites to ensure
produce HLA-binding neo-epitope	generation of core HLA binding peptide

DNA/Peptide Vaccine validation

Assay to determine efficient presentation of peptides by antigen presenting cells, such as dendritic cells*	 Generates peptide of optimum length to preserve the position of the mutant amino acid at the HLA-binding or TCR-binding sites
Ensures that the predicted peptide can activate T-cells*	 T-cell activation assay using patient-derived T-cells, dendritic cells and exogenously added peptides

*Available as an addition to the basic OncoPeptVAC[™] service

Workflow

Key Deliverables

- ✓ Exome Sequence somatic variant identification
- ✓ RNA sequence variant expression

- ✓ HLA typing✓ Vaccine candi
 - Vaccine candidates

✓ All data files

Key Metrics

		$\langle \langle \langle$
Sequencing Method	Illumina Hi-Seq Platform	
Bioinformatics	 Both Proprietary and Public tools 	
Depth	• DNA (150X); RNA (60-80 million reads)	K
Turn Around Time	 4 weeks (Rapid TAT available at additional cost) 	R
Sample Requirements	 Tumor only or tumor with matched normal 	
Sample Types	• Frozen tumor, FFPE, Blood	
DNA Input Required	• 1µg-4µg	85
RNA Input Required	• 300ng-1µg	
Blood Required	• 2-5 million blood cells	
FFPE Required	• 3 X10 micron slides	
Frozen tumor Required	• 300 µg – 1mg	

Please contact Sylvia Janetzki, MD

() +1-201-346-0710

neoepitopes@zellnet.com

@ www.zellnet.com/neo-epitope/